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Two-dimensional, incompressible Navier-Stokes equations are solved numerically 
by finite difference method to study effects of periodic forcing on the development 
of wakes past a circular cylinder. Forcing is applied either by blowing/suction from 
the surface of the cylinder or by perturbing the uniform velocity of a free stream. 
Results suggest that merging of vortices shed from the cylinder, and, thus, develop- 
ment of wakes, are effectively controlled by periodic forcing. Forcing frequencies 
higher than the primary frequency of the Karman vortex street (hereafter referred to 
as the Karman frequency) are found to be effective to control near-wakes, while 
those lower than the, Karman frequency are found to control far-wakes. It is also 
found that by controlling near-wakes, drag working on the cylinder can be reduced 
and becomes minimum at a forcing frequency that depends on the Reynolds 
number. 
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Introduction 

Increasing attention has been paid to the effects of forcing on the 
roll-up and subsequent merging of vortices in separated shear 
layers and wakes, because forcing may have a potential to change 
the flow structures drastically and to provide turbulence control 
and drag reduction. For example, Matsui and Okude (1982) 
observed in their experimental study of a wake past a circular 
cylinder that, when the wake is forced by one half or one third of 
the Karman frequency, the number of vortices merging in the 
subsequent secondary vortex street is two or three, depending on 
the forcing frequency. Leu and Ho (1993) observed that by 
applying suction at the end of a splitter plate, flow features of a 
mixing layer or a wake are drastically changed. In their experi- 
ments of vibrating circular cylinders, Nakano and Rockwell 
(1991, 1993) observed that amplitude- or frequency-modulated 
excitation has a profound effect on the evolution of the vortex 
street behind the cylinder. For a comprehensive review of forced 
shear flows and wakes, readers are referred to Ho and Huerre 
(1984) and Oertel (1990). In this study, the effect of periodic 
forcing on the development of near- and far-wakes of a circular 
cylinder is studied numerically. Special emphasis is placed on the 
effects of forcing frequency on the formation and merging of 
vortices in the wakes. 

Mathematical formulation and numerical 
procedure 

We consider a two-dimensional (2-D), viscous, incompressible 
flow past a circular cylinder. Two different types of forcing are 
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considered: a periodical blowing/suction from the surface of the 
cylinder for a near-wake control and a periodic perturbation of 
the upstream velocity for a far-wake control. In Figure 1, a 
schematic of flow model for the case of near-wake control is 
presented. A blowing/suction is applied at the positions of + 80 ° 
from the leading edge, around which an unforced flow is likely to 
be separated. On the other hand, for the case of far-wake control, 
velocity perturbation of the form u -- U® + uf was applied at the 
inlet boundary. In both cases of near- and far-wake controls, 
forcing velocities are assumed to be of the following form (Inoue 
1992): 

u[, v f = a  o sin(2aTf0t ) + A  1 sin(2~rflt + 1~1) (1) 

where t is the time. Flow quantities are nondimensionalized by 
the uniform velocity Uoo of a free stream and the cylinder 
diameter D. The Reynolds numbers were prescribed to be Re = 
140 for comparison with the experiment of Matsui and Okude 
(1982), and 104 and 2 × 104. 

The Navier-Stokes equations are solved by a t-mite difference 
method based on a SMAC algorithm. The O-type grid system 
with 401 × 101 grid points was used for the case of near-wake 
control, while the case of far-wake control the combination of the 
O-type grid (with 401 × 201 grid points) around the cylinder and 
the rectangular grid system (with 1841 × 161) was used for 
far-wake region. The boundary conditions for unforced flows 
were prescribed as follows: 

on the cylinder surface: 

u - - 0 ,  v = 0  

on the side boundaries: 

Ou av 
- -  = 0 ,  - -  = 0 ,  p = O  
Oy Oy 

on the inlet boundary: 

ap 
u = l ,  v = O ,  - - = 0  

Ox 
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U = v f  l 

( 

Figure I Schematic of  f l ow  model  for the case of near-wake 
control  

on the exit boundary: 

Ou av 
- -  = O ,  - -  = O ,  p = 0 ( 2 )  
Ox Ox 

Pressure on the cylinder surface was determined by linear extrap- 
olation. In this study, we assumed a test section where flow 
quantities are measured accurately, and downstream of the test 
section we added a buffer region where the Karman vortices are 
forced to die out by increasing grid sizes with the downstream 
distance. The outflow condition given in Equation 2 was applied 
at the end of the buffer region. The lengths of the test section and 
the buffer region were determined so that the existence of the 
buffer region and the outflow condition do not affect the flow 
quantities in the test section. The boundary conditions for forced 
cases were modified from Equation 2, as follows: 

Cp 

1.0 

0.0 

-1.0 

-2.0 

-3.0 

Figure 2 
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Figure 3 Undisturbed wakes past a circular cyl inder,  Re = 140l 
(a) exper iment  by Taneda; (b) computa t ion  

(a) 

/ /  

i,!iJJ ,: ,: 

¸¸¸ i :  ¸ 

(b) 

Figure 4 Instantaneous vor t ic i ty  plots in the near-wake region, 
Re = 2 x 104; (a) unforced f low;  (b) single-frequency forced f l ow  
wi th  A 0 = 0 . 1  and f0=3 .0  
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Drag coefficient C o for single-frequency forced cases with a 
fixed value of A 0 = 0.1 is presented versusfo in Figure 5. In the 
figure, the filled circle denotes the case of Re = 2 × 104, and the 
filled triangle denotes the case of Re = 104. As seen from the 

(a) 

@@ 

@® 

for near-wake control: 

u = 0, v = vf at 0 = _ 80 ° on the cylinder surface 

for far-wake control: 

u = v / c o s  0, v = v / s i n  0 on the inlet boundary 

A predictor-corrector scheme of the Crank-Nicolson type was 
used for time integration. Time step was prescribed to be At = 
0.002 -- 0.005. 

Results and discussion 

Control o f  near-wake 

Before proceeding to the forced case, we examined accuracy of 
our computation by companng our calculated results of unforced 
wakes with those of others and also with experiments. Pressure 
distributions along the cylinder surface for the case of Re = 6.7 
× 105 are shown in Figure 2. As is readily seen, the present 
result gives reasonably good agreement with the experiment. 
Figure 3 is a flow pattern calculated for the case of an unforced 
wake with the Reynolds number Re = 140, together with the 
corresponding experimental observation by Taneda (Van Dyke 
1982). The calculated streaklines were obtained by tracking the 
movement of marker particles that were shed at every time-step 
from inside of the boundary layer on the cylinder, sufficiently 
upstream of a separation point. The velocity of a marker particle 
was assumed to be the same as the flow velocity at the particle's 
position at each time. It is seen in Figure 3 that both calculated 
and experimental streaklines are in excellent qualitative agree- 
ments. These results indicate that our computation is reliable, at 
least qualitatively. 

Instantaneous vorticity contours for the cases of unforced and 
single-frequency forced wakes with Re = 2 X 10 4 a re  presented 
in Figure 4. For the case of an unforced flow, the Karman 
frequency F K is approximately F K = 0.22. It is seen in Figure 4 
that, by applying the periodic forcing with a sufficiently large 
amplitude, shear layers separated from the cylinder surface roll-up 
to form discrete vortices regularly. The roll-up frequency of the 
vortices is the same as t:hc forcing frequency. 

(b) 

@ @+@ 

(c) 

@ ® @+@ 

@!:!) 
f @+@ 

Figure 6 Regular vortex merging in the near-wake region of a 
double-frequency forced flow, vorticity contours, Re = 2x  104; 
A 0 = A I = 0 . 1 ,  fo=3.0, f l=fo/2, 131=0; (a) t=383.2; (b) t=  
383.4; (c) t = 383.6 
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Figure 7 Vorticity contours for the case of f0 = FK/2, Re = 140, A o = 0.1 

figure, C O decreases with increasing forcing frequency and be- 
comes minimum at around fo = 3.4 for the case of Re = 2 x 104 
and at around fo = 2.2 for the case of Re = 104. In both cases of 
Re, the frequency Fmi n at which C O becomes minimum is, 
respectively, much higher than the Karman frequency FK(--=- 0.22) 
of the corresponding unforced flows. This result suggests that 
drag reduction is affected by the vortical motion in the near-wake 
where the roll-up frequency of the separated shear layer is much 
higher than the Karman frequency. The minimum value of the 
drag coefficient is about 85% that of the unforced flow for 

Re = 104 and about 60% for Re = 2 x 104. Beyond Fmi . ,  C o 
recovers with further increasing forcing frequency. 

Instantaneous vorticity contours of a double-frequency forced 
wake with fo = 3.0, f~ = 1.5 ( = f o / 2 )  and ~1 = 0 are plotted in 

= 2 X 10 . As seen in the figure, Figure 6 for the case of Re 4 
when a primary frequency fo is combined with its first subhar- 
monic f o /2 ,  every two vortices that are rolled up at the primary 
frequency fo tend to merge regularly. The regular merging of 
vortices had been observed in mixing layers (Ho and Huang 
1982; Inoue 1992). The drag coefficient C o in this case was 
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Figure 8 Vorticity contours for the case of f0 = F~/3, Re = 140, A 0 = 0.1 
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Figure 9 Energy spectra of  ve loc i t y  f luc tuat ions for  the case of  
fo=FK/3, R e = 1 4 0 ,  A 0 = 0 . 1 ;  (a) x / D = l O ;  (b) x / D = 6 0 ;  (c) 
x~ D = 200 
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1.26, which is higher than the value at fo(Co -.~ 1.09) and lower 
than that at fl(Co = 1.34) both for single-frequency forced cases 
presented in Figure 5. 

Contro l  o f  far-wake 

As mentioned in the Introduction, Matsui and Okude (1982) 
observed that, when the cylinder wake is forced by subharmonics 
of the Karman frequency FK, vortices merge regularly, and the 
number of merging vortices depends on the subharmonics: that is, 
every two vortices merge when forced by FK/2, every three 
vortices merge when forced by FK/3. To compare our calculated 
results with the experiment of Matsui and Okude, we prescribe 
the forcing frequency to be Fx/n (n = 2, 3, . . .  ) and the Reynolds 
number to be 140. Time development of vorticity fields for the 
cases of f0 = FK/2 and fo = FK/3 are presented in Figures 7 and 
8, respectively. In the figures, upper and lower arrows, respec- 
tively, present time development of merging vortices, and numer- 
als denote the number of merging vortices. As readily seen from 
the figures, every two vortices merge when fo = FK/2 (Figure 7) 
and every three vortices merge when fo = FK/3 (Figure 8), in 
agreement with the experimental observation by Matsui and 
Okude. Figure 9 shows the energy spectra of velocity fluctuations 
for the same case as in Figure 8. In the figure, E denotes the 
spectral amplitude. The streamwise locations where energy spec- 
tra were measured are x/D = 10, where the primary Karman 
vortex street is almost established, x/D = 60 where merging of 
two vortices among three is in progress, and x/D = 200 where 
three vortices merging is in progress. As seen from Figure 9a, the 
energy spectrum has a peak at f = F  r (~ 0.18) in the primary 
Karman vortex street. Figure 9b shows that at x/D = 60 the 
energy spectrum has a peak at f =  2FK/3 (= 0.12), in agreement 
with the occurrence of two vortices merging. Similarly, at x/D 
= 200 the spectrum has a peak at f =  FK/3 (-.~ 0.06), as seen 
from Figure 9c. In Figure 10, instantaneous vorticity contours are 
presented for the double-frequency forced case of the Karman 
frequency combined with its first subharmonic frequency (Figure 
10a) and high-harmonic frequency (Figure 10b). As seen in 
Figure 10a, when f0 = FK and fl = FK/2, every two vortices 
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Figure 10 Vor t ic i ty  con tours  fo r  the case of  doub le - f requency  forc ing,  Re = 140, A o = A 1 = 0.1, 131 = 0; (a) fo = FK, fl = FK/2; (b) 
[o = FK, [1 = 2 F K  

Int. J. Heat and Fluid Flow, Vol.  16, No. 5, October  1995 331 



Forced wakes around a cylinder: O. Inoue et aL 

merge regularly, as in the single-frequency forced case of f l  = 
F K / 2  (Figure 7). On the other hand, as seen from Figure 10b, 
when f0 = FK and )Co = 2FK the Karman vortices did not show 
any clear evidence of vortex merging, indicating the small influ- 
ence of the high harmonics on the development of far-wakes. 

Conclusion 

Effects of periodic forcing on cylinder wakes were investigated 
by 2-D Navier-Stokes simulations. The results show that the 
number of merging vortices both in near- and far-wakes can be 
controlled by periodic forcing. The results for far-wakes agree 
well with the experimental observation of Matsui and Okude 
(1982), at least qualitatively. It is found that forcing frequencies 
higher than the Karman frequency F K are effective to control 
near-wakes, while those lower than FK control far-wakes. It is 
also found that by controlling near-wakes, drag working on the 
cylinder can be reduced and becomes minimum at a forcing 
frequency that depends on the Reynolds number. 
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